If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+3X-149=0
a = 1; b = 3; c = -149;
Δ = b2-4ac
Δ = 32-4·1·(-149)
Δ = 605
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{605}=\sqrt{121*5}=\sqrt{121}*\sqrt{5}=11\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11\sqrt{5}}{2*1}=\frac{-3-11\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11\sqrt{5}}{2*1}=\frac{-3+11\sqrt{5}}{2} $
| 3-(2x-7)=20 | | 4(n+1)=3n+6 | | 8z-8=16 | | 2x+5(4x-15)=-163 | | Y=6y=X+6X=6 | | -4x-15x+21=-17 | | 5w+12=32 | | (M-15)(m+6)=m-15 | | 2X*e^2X+6=0 | | x2+2x-15000=109000 | | x^2+2x-15000=109000 | | 1/3v-9/4=-9/5 | | 9x+15=3x+93 | | 4x+8+6x+4=56 | | 9x+15=3x+19 | | 4(x—7)=24 | | 36/2x+5=4 | | 9x–6=14 | | 9x—6=14 | | 5|3x-19|=|6x+5| | | 5|3x-19|=|6x+| | | 7x+4/10=0 | | X-9y=-54 | | 32/2x=4 | | €=6+8t | | 2/z-9=4 | | 1+4x-7x+15=2-5x | | 7/9s=-1/3 | | 8(x-2)+x=9x-16 | | -6x-x=10+15-7x-5 | | |x+4|+9=8 | | x+70+70+50=180 |